1
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The complex numbers $\sin x+i \cos 2 x$ and $\cos x$ - $\mathrm{i} \sin 2 x,(\mathrm{i}=\sqrt{-1})$ are conjugate to each other for,

A
$\quad x=\mathrm{n} \pi, \mathrm{n} \in \mathbb{Z}$
B
$x=\left(\mathrm{n}+\frac{1}{2}\right) \pi, \mathrm{n} \in \mathbb{Z}$
C
$x=(3 \mathrm{n}-1) \pi, \mathrm{n} \in \mathbb{Z}$
D
No value of $x$
2
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The probability that in a random arrangement of the letters of the word 'UNIVERSITY', the two 'I's do not come together is

A
$\frac{1}{5}$
B
$\frac{1}{10}$
C
$\frac{4}{5}$
D
$\frac{3}{10}$
3
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The logical statement

$$ [\sim(\sim p \vee q) \vee(p \wedge r) \wedge(\sim q \wedge r)] $$

is equivalent to

A
$(\mathrm{p} \wedge \mathrm{r}) \wedge \sim \mathrm{q}$
B
$(\sim p \wedge \sim q) \wedge r$
C
$\sim p \vee r$
D
$\quad(p \wedge \sim q) \vee r$
4
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The L.P.P. , minimize $z=30 x+20 y, x+y \leq 8$, $x+2 y \geq 4,6 x+4 y \geq 12, x \geqslant 0, y \geqslant 0$ has

A
a unique solution
B
infinitely many solutions
C
minimum value at $(4,0)$
D
minimum value at $(8,0)$
MHT CET Papers
EXAM MAP