1
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x y \mathrm{e}^{x^2}$ is

A
$y=\mathrm{e}^{-\mathrm{e}^{x^2}} \mathrm{c}$, where c is the constant of integration
B
$y=\mathrm{e}^{-x^2} \mathrm{c}$, where c is the constant of integration
C
$y=\mathrm{e}^{\mathrm{e}^{\mathrm{e}^2}} \mathrm{c}$, where c is the constant of integration
D
$y=\mathrm{e}^{x^2} \mathrm{c}$, where c is the constant of integration
2
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

Which of the following is not a homogeneous function?

A
$\quad y^2+2 x y$
B
$2 x-3 y$
C
$\quad \sin \left(\frac{y}{x}\right)$
D
$\cos x+\sin y$
3
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The maximum value and minimum value of the volume of the parallelopiped having coterminous edges $\hat{\mathrm{i}}+x \hat{\mathrm{j}}+\hat{\mathrm{k}}, \hat{\mathrm{j}}+x \hat{\mathrm{k}}$ and $x \hat{\mathrm{i}}+\hat{\mathrm{k}}$ are respectively

A
$\frac{1}{3 \sqrt{3}}+1, \frac{-1}{3 \sqrt{3}}+1$
B
$\frac{2}{3 \sqrt{3}}+1, \frac{-2}{3 \sqrt{3}}+1$
C
$\frac{1}{\sqrt{3}}+1, \frac{-1}{\sqrt{3}}+1$
D
$\frac{2}{\sqrt{3}}+1, \frac{-2}{\sqrt{3}}+1$
4
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The following is the probability distribution of X

$$ \begin{array}{|c|c|c|c|c|} \hline \mathrm{X} & 0 & 1 & 2 & 3 \\ \hline \mathrm{P}(\mathrm{X}=x) & \frac{1+\mathrm{p}}{5} & \frac{2-2 \mathrm{p}}{5} & \frac{2-\mathrm{p}}{5} & \frac{2 \mathrm{p}}{5} \\ \hline \end{array} $$

$$ \text { For a minimum value of } p \text {, the value of } 5 E(X) \text { is } $$

A
5
B
6
C
7
D
8
MHT CET Papers
EXAM MAP