1
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\frac{\mathrm{K}^{\cos ^{-1} x}}{1+\mathrm{K}^{\cos ^{-1} x}}$ and $\mathrm{t}=\mathrm{K}^{\cos ^{-1} x}$, then $\frac{\mathrm{d} y}{\mathrm{dt}}=$

A
$\frac{1}{1+\mathrm{K}^{\cos ^{-1} x}}$
B
$\frac{-1}{1+\mathrm{K}^{\cos ^{-1} x}}$
C
$\frac{1}{\left(1+\mathrm{K}^{\cos ^{-1} x}\right)^2}$
D
$\frac{-1}{\left(1+\mathrm{K}^{\cos ^{-1} x}\right)^2}$
2
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The complex numbers $\sin x+i \cos 2 x$ and $\cos x$ - $\mathrm{i} \sin 2 x,(\mathrm{i}=\sqrt{-1})$ are conjugate to each other for,

A
$\quad x=\mathrm{n} \pi, \mathrm{n} \in \mathbb{Z}$
B
$x=\left(\mathrm{n}+\frac{1}{2}\right) \pi, \mathrm{n} \in \mathbb{Z}$
C
$x=(3 \mathrm{n}-1) \pi, \mathrm{n} \in \mathbb{Z}$
D
No value of $x$
3
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The probability that in a random arrangement of the letters of the word 'UNIVERSITY', the two 'I's do not come together is

A
$\frac{1}{5}$
B
$\frac{1}{10}$
C
$\frac{4}{5}$
D
$\frac{3}{10}$
4
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The logical statement

$$ [\sim(\sim p \vee q) \vee(p \wedge r) \wedge(\sim q \wedge r)] $$

is equivalent to

A
$(\mathrm{p} \wedge \mathrm{r}) \wedge \sim \mathrm{q}$
B
$(\sim p \wedge \sim q) \wedge r$
C
$\sim p \vee r$
D
$\quad(p \wedge \sim q) \vee r$
MHT CET Papers
EXAM MAP