1
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\cos (\log x)$ then $\mathrm{f}\left(x^2\right) \cdot \mathrm{f}\left(y^2\right)-\frac{1}{2}\left[\mathrm{f}\left(\frac{x^2}{y^2}\right)+\mathrm{f}\left(x^2 y^2\right)\right]$ has the value

A
-2
B
-1
C
$\frac{1}{2}$
D
0
2
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x y \mathrm{e}^{x^2}$ is

A
$y=\mathrm{e}^{-\mathrm{e}^{x^2}} \mathrm{c}$, where c is the constant of integration
B
$y=\mathrm{e}^{-x^2} \mathrm{c}$, where c is the constant of integration
C
$y=\mathrm{e}^{\mathrm{e}^{\mathrm{e}^2}} \mathrm{c}$, where c is the constant of integration
D
$y=\mathrm{e}^{x^2} \mathrm{c}$, where c is the constant of integration
3
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

Which of the following is not a homogeneous function?

A
$\quad y^2+2 x y$
B
$2 x-3 y$
C
$\quad \sin \left(\frac{y}{x}\right)$
D
$\cos x+\sin y$
4
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The maximum value and minimum value of the volume of the parallelopiped having coterminous edges $\hat{\mathrm{i}}+x \hat{\mathrm{j}}+\hat{\mathrm{k}}, \hat{\mathrm{j}}+x \hat{\mathrm{k}}$ and $x \hat{\mathrm{i}}+\hat{\mathrm{k}}$ are respectively

A
$\frac{1}{3 \sqrt{3}}+1, \frac{-1}{3 \sqrt{3}}+1$
B
$\frac{2}{3 \sqrt{3}}+1, \frac{-2}{3 \sqrt{3}}+1$
C
$\frac{1}{\sqrt{3}}+1, \frac{-1}{\sqrt{3}}+1$
D
$\frac{2}{\sqrt{3}}+1, \frac{-2}{\sqrt{3}}+1$
MHT CET Papers
EXAM MAP