1
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The greatest possible number of points of intersection of 8 distinct straight lines and 4 distinct circles is

A
28
B
104
C
$\quad{ }^{12} \mathrm{C}_2$
D
$\quad{ }^4 \mathrm{C}_2$
2
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

In $\triangle A B C$, with usual notations, $a \cos B=b \cos A, a \cos C \neq c \cos A$ then $\mathrm{A}(\triangle \mathrm{ABC})$ $\qquad$ sq. units.

A
$\quad \frac{c}{2} \sqrt{4 a^2-b^2}$
B
$\frac{c}{4} \sqrt{4 a^2-c^2}$
C
$\quad \frac{b}{2} \sqrt{4 b^2-c^2}$
D
$\frac{b}{4} \sqrt{4 b^2-c^2}$
3
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The radius of the base of a cone is increasing at the rate $3 \mathrm{~cm} /$ minute and the altitude is decreasing at the rate $4 \mathrm{~cm} /$ minute . The rate at which the lateral surface area is changing, when the radius is 7 cm and altitude is 24 cm is

A
$75 \pi \mathrm{~cm}^2 /$ minute
B
$25 \pi \mathrm{~cm}^2 /$ minute
C
$3 \pi \mathrm{~cm}^2 /$ minute
D
$54 \pi \mathrm{~cm}^2 /$ minute
4
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle ABC , with usual notations if $\mathrm{a}=4, \mathrm{~b}=8, \angle \mathrm{C}=60^{\circ}$, then the value of $\angle \mathrm{B}$ and the ratio $\cos \mathrm{A}: \cos \mathrm{C}$ respectively are,

A
$\frac{\pi}{4}, 1: \sqrt{3}$
B
$\frac{\pi}{2}, \sqrt{3}: 1$
C
$\frac{\pi}{2}, 2: \sqrt{3}$
D
$\frac{\pi}{6}, \sqrt{3}: 2$
MHT CET Papers
EXAM MAP