1
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

A random variable X takes values $0,1,2,3$, ........ with probabilities. $\mathrm{P}(\mathrm{X}=x)=\mathrm{k}(x+1)\left(\frac{1}{2}\right)^x, \mathrm{k}$ is a constant, then $P(X=1)=$

A
$\frac{1}{2}$
B
$\frac{1}{3}$
C
$\frac{1}{4}$
D
$\frac{1}{8}$
2
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The area inside the parabola $y^2=4 \mathrm{a} x$, between the lines $x=\mathrm{a}$ and $x=4 \mathrm{a}$ is equal to

A
$4 a^2$ sq. units
B
$8 \mathrm{a}^2$ sq. units
C
$\frac{56 \mathrm{a}^2}{3}$ sq. units
D
$\frac{35 \mathrm{a}^2}{3}$ sq. units
3
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$\int_2^4 \frac{\log x^2}{\log x^2+\log \left(36-12 x+x^2\right)} \mathrm{d} x$ is equal to

A
1
B
2
C
4
D
6
4
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\bar{a}, \bar{b}$, and $\bar{c}$ be unit vectors. Suppose that $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=0$ and if the angle between $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ is $\frac{\pi}{6}$, then $\overline{\mathrm{a}}$ is

A
$\pm(\bar{b} \times \bar{c})$
B
$\pm \frac{1}{2}(\overline{\mathrm{~b}} \times \overline{\mathrm{c}})$
C
$\quad \pm 2(\overline{\mathrm{~b}} \times \overline{\mathrm{c}})$
D
$\quad \pm 4(\overline{\mathrm{~b}} \times \overline{\mathrm{c}})$
MHT CET Papers
EXAM MAP