1
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+1
-0

Two radioactive materials $A$ and $B$ having decay constant ' $7 \lambda$ ' and ' $\lambda$ ' respectively, initially have same number of nuclei. The time taken to have the ratio of number of nuclei of material B to that of A as ' e ' is

A
$\frac{1}{\lambda}$
B
$\frac{1}{6 \lambda}$
C
$\frac{1}{7 \lambda}$
D
$\frac{1}{8 \lambda}$
2
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+1
-0

A centigrade and Fahrenheit thermometer are dipped in boiling water. The water temperature is lowered until the Fahrenheit temperature observed is $140^{\circ} \mathrm{F}$. At that time the temperature registered by the centigrade thermometer is

A
$80^{\circ} \mathrm{C}$
B
$60^{\circ} \mathrm{C}$
C
$40^{\circ} \mathrm{C}$
D
$20^{\circ} \mathrm{C}$
3
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+1
-0

Photoelectric emission is observed from a metallic surface for frequencies $v_1$ and $v_2$ of the incident light rays $\left(v_1>v_2\right)$. If the maximum values of kinetic energy of the photoelectrons emitted in the two cases are in the ratio of $1: \mathrm{k}$, then the threshold frequency of metallic surface is

A
$\frac{\mathrm{k} \mathrm{v}_2-\mathrm{v}_1}{\mathrm{k}-1}$
B
$\frac{v_2-v_1}{k}$
C
$\frac{v_1-v_2}{k-1}$
D
$\frac{\mathrm{k} \mathrm{v}_1-\mathrm{v}_2}{\mathrm{k}-1}$
4
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+1
-0

The electric charges ' $+2 q$ ', ' $+2 q$ ', ' $-2 q$ ' and ' $-2 q$ ' are placed at the corners of square of side ' 2 L ' as shown in figure. The electric potential at point 'A', midway between the two charges ' $+2 q$ ' and ' $+2 q$ ' is

( $\varepsilon_0=$ permittivity of free space)

A
$\quad \frac{1}{4 \pi \varepsilon_0}\left(\frac{2 q}{L}\right)\left[1+\frac{1}{\sqrt{5}}\right]$
B
$\frac{\mathrm{q}}{\pi \varepsilon_0 \mathrm{~L}}\left[1-\frac{1}{\sqrt{5}}\right]$
C
$\frac{\mathrm{q}}{\pi \varepsilon_0 \mathrm{~L}}\left[1+\frac{1}{\sqrt{5}}\right]$
D
$\frac{1}{4 \pi \varepsilon_0}\left(\frac{2 q}{L}\right)\left[1-\frac{1}{\sqrt{5}}\right]$
MHT CET Papers
EXAM MAP