1
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the plane containing the line $\frac{x-2}{3}=\frac{y+1}{2}=\frac{z-4}{-2}$ and the point $(0,5,0)$ is

A
$2 x-4 y-3 z+20=0$
B
$2 x+8 y+11 z-40=0$
C
$8 x-5 y+z+25=0$
D
$\quad x-4 y+3 z+20=0$
2
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the statement pattern $(p \wedge q) \rightarrow(r \vee \sim s)$ is false, then the truth values of $p, q, r$ and $s$ are respectively

A
$T, F, T, F$
B
$T, T, T, F$
C
$T, T, F, F$
D
$T, T, F, T$
3
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $f(x)= \begin{cases}\frac{8^x-4^x-2^x+1}{x^2}, & \text { if } x>0 \\ e^x \sin x+x+\lambda \log 4, & \text { if } x \leqslant 0\end{cases}$

is continuous at $x=0$ then the value of $1000 \mathrm{e}^\lambda=$

A
1000
B
3000
C
2000
D
4000 $$\mathop {\lim }\limits_{x \to {0^ - }} $$
4
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The line of intersection of the planes $\bar{r} \cdot(3 \hat{i}-\hat{j}+\hat{k})=1 \quad$ and $\quad \bar{r} \cdot(\hat{i}+4 \hat{j}-2 \hat{k})=2 \quad$ is parallel to the vector

A
$\quad 2 \hat{\mathrm{i}}+7 \hat{\mathrm{j}}+13 \hat{\mathrm{k}}$
B
$-2 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}+13 \hat{\mathrm{k}}$
C
$-2 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}-13 \hat{\mathrm{k}}$
D
$\quad-2 \hat{\mathrm{i}}+7 \hat{\mathrm{j}}+13 \hat{\mathrm{k}}$
MHT CET Papers
EXAM MAP