1
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$\int \sqrt{x^2-6 x-16} \mathrm{~d} x$ equals

A

$\left(\frac{x-3}{2}\right) \sqrt{x^2-6 x-16} +\frac{5}{2} \log \left(x-3+\sqrt{x^2-6 x-16}\right)+c$

where c is the constant of integration

B

$$ \begin{aligned} & \left(\frac{x-3}{2}\right) \sqrt{x^2-6 x-16} -\frac{25}{2} \log \left(x-3+\sqrt{x^2-6 x-16}\right)+c \end{aligned} $$

where c is the constant of integration

C

$\left(\frac{x-3}{2}\right) \sqrt{x^2-6 x-16}+\frac{25}{2} \log \left(x-3+\sqrt{x^2-6 x-16}\right)+c $

where c is the constant of integration

D

$$ \begin{aligned} \left(\frac{x-3}{2}\right) \sqrt{x^2-6 x-16} & -\frac{5}{2} \log \left(x-3+\sqrt{x^2-6 x-16}\right)+c \end{aligned} $$

where $c$ is the constant of integration

2
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $2 \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{3}{8}$ is

A
$\tan ^{-1}\left(\frac{42}{24}\right)$
B
$2 \tan ^{-1}\left(\frac{42}{24}\right)$
C
$\tan ^{-1}\left(\frac{24}{41}\right)$
D
$\tan ^{-1}\left(\frac{41}{12}\right)$
3
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

With usual notation, in triangle ABC , $\mathrm{m} \angle \mathrm{A}=30^{\circ}$ then the value of $\left(1+\frac{\mathrm{a}}{\mathrm{c}}+\frac{\mathrm{b}}{\mathrm{c}}\right)\left(1+\frac{\mathrm{c}}{\mathrm{b}}-\frac{\mathrm{a}}{\mathrm{b}}\right)$ is equal to

A
$\frac{2+\sqrt{3}}{2}$
B
$2+\sqrt{3}$
C
$\frac{1+\sqrt{3}}{2}$
D
$1+\sqrt{3}$
4
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The greatest possible number of points of intersection of 8 distinct straight lines and 4 distinct circles is

A
28
B
104
C
$\quad{ }^{12} \mathrm{C}_2$
D
$\quad{ }^4 \mathrm{C}_2$
MHT CET Papers
EXAM MAP