1
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

With usual notation, in triangle ABC , $\mathrm{m} \angle \mathrm{A}=30^{\circ}$ then the value of $\left(1+\frac{\mathrm{a}}{\mathrm{c}}+\frac{\mathrm{b}}{\mathrm{c}}\right)\left(1+\frac{\mathrm{c}}{\mathrm{b}}-\frac{\mathrm{a}}{\mathrm{b}}\right)$ is equal to

A
$\frac{2+\sqrt{3}}{2}$
B
$2+\sqrt{3}$
C
$\frac{1+\sqrt{3}}{2}$
D
$1+\sqrt{3}$
2
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The greatest possible number of points of intersection of 8 distinct straight lines and 4 distinct circles is

A
28
B
104
C
$\quad{ }^{12} \mathrm{C}_2$
D
$\quad{ }^4 \mathrm{C}_2$
3
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

In $\triangle A B C$, with usual notations, $a \cos B=b \cos A, a \cos C \neq c \cos A$ then $\mathrm{A}(\triangle \mathrm{ABC})$ $\qquad$ sq. units.

A
$\quad \frac{c}{2} \sqrt{4 a^2-b^2}$
B
$\frac{c}{4} \sqrt{4 a^2-c^2}$
C
$\quad \frac{b}{2} \sqrt{4 b^2-c^2}$
D
$\frac{b}{4} \sqrt{4 b^2-c^2}$
4
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The radius of the base of a cone is increasing at the rate $3 \mathrm{~cm} /$ minute and the altitude is decreasing at the rate $4 \mathrm{~cm} /$ minute . The rate at which the lateral surface area is changing, when the radius is 7 cm and altitude is 24 cm is

A
$75 \pi \mathrm{~cm}^2 /$ minute
B
$25 \pi \mathrm{~cm}^2 /$ minute
C
$3 \pi \mathrm{~cm}^2 /$ minute
D
$54 \pi \mathrm{~cm}^2 /$ minute
MHT CET Papers
EXAM MAP