1
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The shortest distance between the lines $\bar{r}=(4 \hat{i}-\hat{j})+\lambda(\hat{i}+2 \hat{j}-3 \hat{k})$ and $\bar{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(2 \hat{i}+4 \hat{j}-5 \hat{k})$ is

A
$\frac{1}{\sqrt{5}}$ units
B
$\frac{6}{\sqrt{5}}$ units
C
$\frac{2}{\sqrt{5}}$ units
D
$\frac{3}{\sqrt{5}}$ units
2
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\cos (\log x)$ then $\mathrm{f}\left(x^2\right) \cdot \mathrm{f}\left(y^2\right)-\frac{1}{2}\left[\mathrm{f}\left(\frac{x^2}{y^2}\right)+\mathrm{f}\left(x^2 y^2\right)\right]$ has the value

A
-2
B
-1
C
$\frac{1}{2}$
D
0
3
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x y \mathrm{e}^{x^2}$ is

A
$y=\mathrm{e}^{-\mathrm{e}^{x^2}} \mathrm{c}$, where c is the constant of integration
B
$y=\mathrm{e}^{-x^2} \mathrm{c}$, where c is the constant of integration
C
$y=\mathrm{e}^{\mathrm{e}^{\mathrm{e}^2}} \mathrm{c}$, where c is the constant of integration
D
$y=\mathrm{e}^{x^2} \mathrm{c}$, where c is the constant of integration
4
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

Which of the following is not a homogeneous function?

A
$\quad y^2+2 x y$
B
$2 x-3 y$
C
$\quad \sin \left(\frac{y}{x}\right)$
D
$\cos x+\sin y$
MHT CET Papers
EXAM MAP