1
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\quad \int \frac{3 \sin x \cos x}{4 \sin x+7} \mathrm{~d} x=\mathrm{A} \sin x-\mathrm{Blog}(4 \sin x+7)+\mathrm{c}$ where c is the constant of integration, then the value of $\mathrm{A}+\mathrm{B}$ is equal to

A
$\frac{9}{16}$
B
$\frac{-9}{16}$
C
$\frac{33}{16}$
D
$\frac{-33}{16}$
2
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

Three vectors $\hat{\mathrm{i}}-\hat{\mathrm{k}}, \lambda \hat{\mathrm{i}}+\hat{\mathrm{j}}+(1-\lambda) \hat{\mathrm{k}}$ and $\mu \hat{\mathrm{i}}+\lambda \hat{\mathrm{j}}+(1+\lambda-\mu) \hat{\mathrm{k}}$ represents coterminous edges of a parallelopiped, then the volume of the parallelopiped depends on.

A
only $\lambda$
B
only $\mu$
C
both $\lambda$ and $\mu$
D
neither $\lambda$ nor $\mu$
3
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int \frac{\mathrm{d} x}{x\left(x^2+1\right)}= $$

A
$\log (x)-\frac{1}{2} \log \left(x^2+1\right)+\mathrm{c}$, where c is the constant of integration.
B
$\frac{1}{2} \log (x)-\log \left(x^2+1\right)+\mathrm{c}$, where c is the constant of integration.
C
$\log (x)+\frac{1}{2} \log \left(x^2+1\right)+\mathrm{c}$, where c is the constant of integration.
D
$-\log (x)-\frac{1}{2} \log \left(x^2+1\right)+\mathrm{c}$, where c is the constant of integration.
4
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The joint equation of the bisectors of the angles between the lines $x=5$ and $y=3$ is

A
$x^2-y^2-10 x+6 y+16=0$
B
$x^2+y^2-10 x-6 y-16=0$
C
$x^2+y^2+10 x+6 y-16=0$
D
$x^2+y^2-5 x-2 y-7=0$
MHT CET Papers
EXAM MAP