1
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$ \mathop {\lim }\limits_{x \to \infty } \frac{\mathrm{e}^{x^4}-1}{\mathrm{e}^{x^4}+1}= $$

A
1
B
e
C
$\frac{1}{\mathrm{e}}$
D
not defined
2
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The shortest distance between the lines $\bar{r}=(4 \hat{i}-\hat{j})+\lambda(\hat{i}+2 \hat{j}-3 \hat{k})$ and $\bar{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(2 \hat{i}+4 \hat{j}-5 \hat{k})$ is

A
$\frac{1}{\sqrt{5}}$ units
B
$\frac{6}{\sqrt{5}}$ units
C
$\frac{2}{\sqrt{5}}$ units
D
$\frac{3}{\sqrt{5}}$ units
3
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\cos (\log x)$ then $\mathrm{f}\left(x^2\right) \cdot \mathrm{f}\left(y^2\right)-\frac{1}{2}\left[\mathrm{f}\left(\frac{x^2}{y^2}\right)+\mathrm{f}\left(x^2 y^2\right)\right]$ has the value

A
-2
B
-1
C
$\frac{1}{2}$
D
0
4
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x y \mathrm{e}^{x^2}$ is

A
$y=\mathrm{e}^{-\mathrm{e}^{x^2}} \mathrm{c}$, where c is the constant of integration
B
$y=\mathrm{e}^{-x^2} \mathrm{c}$, where c is the constant of integration
C
$y=\mathrm{e}^{\mathrm{e}^{\mathrm{e}^2}} \mathrm{c}$, where c is the constant of integration
D
$y=\mathrm{e}^{x^2} \mathrm{c}$, where c is the constant of integration
MHT CET Papers
EXAM MAP