1
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The maximum value and minimum value of the volume of the parallelopiped having coterminous edges $\hat{\mathrm{i}}+x \hat{\mathrm{j}}+\hat{\mathrm{k}}, \hat{\mathrm{j}}+x \hat{\mathrm{k}}$ and $x \hat{\mathrm{i}}+\hat{\mathrm{k}}$ are respectively

A
$\frac{1}{3 \sqrt{3}}+1, \frac{-1}{3 \sqrt{3}}+1$
B
$\frac{2}{3 \sqrt{3}}+1, \frac{-2}{3 \sqrt{3}}+1$
C
$\frac{1}{\sqrt{3}}+1, \frac{-1}{\sqrt{3}}+1$
D
$\frac{2}{\sqrt{3}}+1, \frac{-2}{\sqrt{3}}+1$
2
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The following is the probability distribution of X

$$ \begin{array}{|c|c|c|c|c|} \hline \mathrm{X} & 0 & 1 & 2 & 3 \\ \hline \mathrm{P}(\mathrm{X}=x) & \frac{1+\mathrm{p}}{5} & \frac{2-2 \mathrm{p}}{5} & \frac{2-\mathrm{p}}{5} & \frac{2 \mathrm{p}}{5} \\ \hline \end{array} $$

$$ \text { For a minimum value of } p \text {, the value of } 5 E(X) \text { is } $$

A
5
B
6
C
7
D
8
3
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\overline{\mathrm{a}}$ and $\overline{\mathrm{c}}$ be unit vectors at an angle $\frac{\pi}{3}$ with each other. If $(\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})) \cdot(\overline{\mathrm{a}} \times \overline{\mathrm{c}})=5$, then $[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]=$

A
10
B
-10
C
9
D
$\quad-9$
4
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

A random variable X takes values $0,1,2,3$, ........ with probabilities. $\mathrm{P}(\mathrm{X}=x)=\mathrm{k}(x+1)\left(\frac{1}{2}\right)^x, \mathrm{k}$ is a constant, then $P(X=1)=$

A
$\frac{1}{2}$
B
$\frac{1}{3}$
C
$\frac{1}{4}$
D
$\frac{1}{8}$
MHT CET Papers
EXAM MAP