1
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\bar{a}, \bar{b}$, and $\bar{c}$ be unit vectors. Suppose that $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=0$ and if the angle between $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ is $\frac{\pi}{6}$, then $\overline{\mathrm{a}}$ is

A
$\pm(\bar{b} \times \bar{c})$
B
$\pm \frac{1}{2}(\overline{\mathrm{~b}} \times \overline{\mathrm{c}})$
C
$\quad \pm 2(\overline{\mathrm{~b}} \times \overline{\mathrm{c}})$
D
$\quad \pm 4(\overline{\mathrm{~b}} \times \overline{\mathrm{c}})$
2
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ are unit vectors such that $|\overline{\mathrm{a}}+\overline{\mathrm{b}}|=\sqrt{3}$, then the angle between $\bar{a}$ and $\bar{b}$ is

A
$\frac{\pi}{6}$
B
$\frac{\pi}{3}$
C
$\frac{\pi}{4}$
D
$\frac{\pi}{2}$
3
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\int_0^2\left[x^2\right] \mathrm{d} x$ is (where $[x]$ denotes the greatest integer function not greater than $x$ )

A
$5-\sqrt{2}-\sqrt{3}$
B
$5+\sqrt{2}-\sqrt{3}$
C
$5+\sqrt{2}+\sqrt{3}$
D
$5-\sqrt{2}+\sqrt{3}$
4
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\quad \int \frac{3 \sin x \cos x}{4 \sin x+7} \mathrm{~d} x=\mathrm{A} \sin x-\mathrm{Blog}(4 \sin x+7)+\mathrm{c}$ where c is the constant of integration, then the value of $\mathrm{A}+\mathrm{B}$ is equal to

A
$\frac{9}{16}$
B
$\frac{-9}{16}$
C
$\frac{33}{16}$
D
$\frac{-33}{16}$
MHT CET Papers
EXAM MAP