All the springs in fig. (a), (b) and (c) are identical, each having force constant K . Mass attached to each system is ' $m$ '. If $T_a, T_b$ and $T_c$ are the time periods of oscillations of the three systems respectively, then
The point charges $+\mathrm{q},-\mathrm{q},-\mathrm{q},+\mathrm{q},+\mathrm{Q}$ and -q are placed at the vertices of a regular hexagon ABCDEF as shown in figure. The electric field at the centre of hexagon ' $O$ ' due to the five charges at $A, B, C, D$ and $F$ is thrice the electric field at centre ' $O$ ' due to charge +Q at E alone. The value of Q is
A $1 \mu \mathrm{~F}$ capacitor is charged to 50 V and is then discharged through 10 mH inductor of negligible resistance. The maximum current in the inductor is
The phase difference between two waves giving rise to dark fringe in Young's double slit experiment is ( n is the integer)