1
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The number of arrangements, of the letters of the word MANAMA in which two M's do not appear adjacent, is

A
40
B
60
C
80
D
100
2
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A random variable $X$ has the following probability distribution

$X=x$ 1 2 3 4 5 6 7 8
$P(X=x)$ 0.15 0.23 0.10 0.12 0.20 0.08 0.07 0.05

For the event $E=\{X$ is a prime number $\}$, $F=\{X<4\}$, then $P(E \cup F)$ is

A
0.5
B
0.77
C
0.35
D
0.75
3
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{x+1}{x\left(1+x \mathrm{e}^x\right)^2} \mathrm{dx}=$$

A
$\log \left|\frac{x \mathrm{e}^x}{1+x \mathrm{e}^x}\right|+\frac{x}{1+x \mathrm{e}^x}+c$, (where c is a constant of integration)
B
$\quad \log \left|\frac{x \mathrm{e}^x}{1+x \mathrm{e}^x}\right|+\frac{\mathrm{e}^x}{1+x \mathrm{e}^x}+c$, (where c is a constant of integration)
C
$\quad \log \left|\frac{x \mathrm{e}^x}{1+x \mathrm{e}^x}\right|+\frac{1}{1+x \mathrm{e}^x}+c$, (where c is a constant of integration)
D
$\log \left|\frac{x \mathrm{e}^x}{1+x \mathrm{e}^x}\right|-\frac{1}{1+x \mathrm{e}^x}+c$, (where c is a constant of integration)
4
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

An ice ball melts at the rate which is proportional to the amount of ice at that instant. Half of the quantity of ice melts in 15 minutes. $x_0$ is the initial quantity of ice. If after 30 minutes the amount of ice left is $\mathrm{kx}_0$, then the value of $k$ is

A
$\frac{1}{2}$
B
$\frac{1}{3}$
C
$\frac{1}{4}$
D
$\frac{1}{8}$
MHT CET Papers
EXAM MAP