1
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y(x)$ is the solution of the differential equation $(x+2) \frac{\mathrm{d} y}{\mathrm{~d} x}=x^2+4 x-9, x \neq-2$ and $y(0)=0$, then $y(-4)$ is equal to

A
0
B
1
C
$-$1
D
2
2
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the sides of a triangle $a, b, c$ are in A.P., then with usual notations, a $\cos ^2 \frac{\mathrm{C}}{2}+\mathrm{c} \cos ^2 \frac{\mathrm{~A}}{2}$ is

A
$\frac{3 \mathrm{a}}{2}$
B
  $\frac{3 \mathrm{c}}{2}$
C
$\frac{3 b}{2}$
D
$\frac{\mathrm{a}+\mathrm{c}}{2}$
3
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A random variable x takes the values $0,1,2$, $3, \ldots$ with probability $\mathrm{P}(\mathrm{X}=x)=\mathrm{k}(x+1)\left(\frac{1}{5}\right)^x$, where k is a constant, then $\mathrm{P}(\mathrm{X}=0)$ is

A
$\frac{16}{25}$
B
$\frac{7}{25}$
C
$\frac{19}{25}$
D
$\frac{18}{25}$
4
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $A\left[\begin{array}{ll}2 & 1 \\ 7 & 4\end{array}\right]$ then $\left(A^2-5 A\right)^{-1}$ is

A
$\left(-\frac{1}{4}\right)\left[\begin{array}{cc}-3 & 1 \\ 7 & -1\end{array}\right]$
B
$\left(\frac{1}{4}\right)\left[\begin{array}{cc}-3 & 1 \\ 7 & -1\end{array}\right]$
C
$\left(\frac{1}{4}\right)\left[\begin{array}{ll}3 & 1 \\ 7 & 1\end{array}\right]$
D
$\left(\frac{1}{-4}\right)\left[\begin{array}{ll}3 & -1 \\ 7 & -1\end{array}\right]$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12