A closely wound coil of 100 turns and of crosssection $1 \mathrm{~cm}^2$ has coefficient of self inductance 1 mH . The magnetic induction at the centre of the core of a coil when a current of 2 A flows in it, will be (in $\mathrm{Wb} / \mathrm{m}^2$ )
A particle of mass ' $m$ ' is performing uniform circular motion along a circular path of radius ' $r$ '. Its angular momentum about the axis passing through the centre and perpendicular to the plane is ' $L$ '. The kinetic energy of the particle is
Kirchhoff's second law is based on the law of conservation of
A moving body with mass ' $\mathrm{m}_1$ ' strikes a stationary mass ' $\mathrm{m}_2$ '. What should be the ratio $\frac{m_1}{m_2}$ so as to decrease the velocity of first by (1.5) times the velocity after the collision?