1
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of $\sin x+\cos x=1$ is

A
$x=2 \mathrm{n} \pi, \mathrm{n} \in \mathbb{Z}$
B
$x=\mathrm{n} \pi+\frac{\pi}{2}, \mathrm{n} \in \mathbb{Z}$
C
$x=\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{4}-\frac{\pi}{4}, \mathrm{n} \in \mathbb{Z}$
D
not existing
2
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

In a $\triangle \mathrm{PQR}, \mathrm{m} \angle \mathrm{R}=\frac{\pi}{2}$. If $\tan \left(\frac{\mathrm{P}}{2}\right)$ and $\tan \left(\frac{\mathrm{Q}}{2}\right)$ are the roots of the equation $a x^2+b x+c=0(a \neq 0)$, then

A
$\mathrm{a}+\mathrm{b}=\mathrm{c}$
B
$\mathrm{b}+\mathrm{c}=\mathrm{a}$
C
$\mathrm{a+c=b}$
D
$\mathrm{b}=\mathrm{c}$
3
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If for some $\alpha \in \mathbb{R}$, the lines $\mathrm{L}_1: \frac{x+1}{2}=\frac{y-2}{-1}=\frac{z-1}{1}$ and $\mathrm{L}_2: \frac{x+2}{\alpha}=\frac{y+1}{5-\alpha}=\frac{z+1}{1}$ are coplanar, then the line $L_2$ passes through the point

A
$(10,2,2)$
B
$(2,-10,-2)$
C
$(10,-2,-2)$
D
$(-2,10,2)$
4
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \cos (\log x) \mathrm{d} x=$$

A
$\frac{x}{2}(\sin (\log x)-\cos (\log x))+c$, (where c is a constant of integration)
B
$x(\cos (\log x)-\sin (\log x))+c$, (where c is a constant of integration)
C
$\frac{x}{2}(\cos (\log x)+\sin (\log x))+\mathrm{c}$, (where c is a constant of integration)
D
$x(\cos (\log x)+\sin (\log x))+c$, (where c is a constant of integration)
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12