1
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of $\sin x+\cos x=1$ is

A
$x=2 \mathrm{n} \pi, \mathrm{n} \in \mathbb{Z}$
B
$x=\mathrm{n} \pi+\frac{\pi}{2}, \mathrm{n} \in \mathbb{Z}$
C
$x=\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{4}-\frac{\pi}{4}, \mathrm{n} \in \mathbb{Z}$
D
not existing
2
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

In a $\triangle \mathrm{PQR}, \mathrm{m} \angle \mathrm{R}=\frac{\pi}{2}$. If $\tan \left(\frac{\mathrm{P}}{2}\right)$ and $\tan \left(\frac{\mathrm{Q}}{2}\right)$ are the roots of the equation $a x^2+b x+c=0(a \neq 0)$, then

A
$\mathrm{a}+\mathrm{b}=\mathrm{c}$
B
$\mathrm{b}+\mathrm{c}=\mathrm{a}$
C
$\mathrm{a+c=b}$
D
$\mathrm{b}=\mathrm{c}$
3
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If for some $\alpha \in \mathbb{R}$, the lines $\mathrm{L}_1: \frac{x+1}{2}=\frac{y-2}{-1}=\frac{z-1}{1}$ and $\mathrm{L}_2: \frac{x+2}{\alpha}=\frac{y+1}{5-\alpha}=\frac{z+1}{1}$ are coplanar, then the line $L_2$ passes through the point

A
$(10,2,2)$
B
$(2,-10,-2)$
C
$(10,-2,-2)$
D
$(-2,10,2)$
4
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \cos (\log x) \mathrm{d} x=$$

A
$\frac{x}{2}(\sin (\log x)-\cos (\log x))+c$, (where c is a constant of integration)
B
$x(\cos (\log x)-\sin (\log x))+c$, (where c is a constant of integration)
C
$\frac{x}{2}(\cos (\log x)+\sin (\log x))+\mathrm{c}$, (where c is a constant of integration)
D
$x(\cos (\log x)+\sin (\log x))+c$, (where c is a constant of integration)
MHT CET Papers
EXAM MAP