1
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\mathrm{a} \log x+\mathrm{b} x^2+x$ has its extreme values at $x=-1$ and $x=2$, then the value of $\left(\frac{a}{b}+\frac{b}{a}\right)$ is

A
$-\frac{7}{4}$
B
$-\frac{15}{4}$
C
$-\frac{17}{4}$
D
$-\frac{5}{4}$
2
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\hat{a}=\frac{1}{\sqrt{10}}(3 \hat{i}+\hat{k})$ and $\hat{b}=\frac{1}{7}(2 \hat{i}+3 \hat{j}-6 \hat{k})$, then the value of $(2 \hat{a}-\hat{b}) \cdot[(\hat{a} \times \hat{b}) \times(\hat{a}+2 \hat{b})]$ is

A
5
B
3
C
$-$5
D
$-$3
3
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\log _{x^2}(\log x)$, then at $x=\mathrm{e}, \mathrm{f}^{\prime}(x)$ has the value

A
$\frac{1}{\mathrm{e}^2}$
B
$\frac{1}{\mathrm{e}}$
C
$\mathrm{e}^2$
D
$\frac{1}{2 \mathrm{e}}$
4
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{I}=\int_0^{\frac{\pi}{4}} \log (1+\tan x) \mathrm{d} x$, then value of $\mathrm{I}$ is

A
$\frac{\pi}{16} \log 2$
B
$\frac{\pi}{2} \log 2$
C
$\frac{\pi}{8} \log 2$
D
$\frac{\pi}{4} \log 2$
MHT CET Papers
EXAM MAP