1
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The maximum value of the function $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^3-15 x^2+36 x-48$ on the set $A=\left\{x / x^2+20 \leq 9 x\right\}$ is

A
$-$16
B
$-$7
C
16
D
7
2
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The number of unit vectors perpendicular to $\overline{\mathrm{a}}=(1,1,0)$ and $\overline{\mathrm{b}}=(0,1,1)$ is

A
one.
B
two.
C
three.
D
infinite.
3
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the normal to the curve $y=\mathrm{f}(x)$ at the point $(3,4)$ makes an angle of $\left(\frac{3 \pi}{4}\right)$ with the positive $X$-axis, then the value of $f^{\prime}(3)$ is

A
$-1$
B
$-\frac{3}{4}$
C
$\frac{4}{3}$
D
1
4
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int \frac{2 x+5}{\sqrt{7-6 x-x^2}} d x=A \sqrt{7-6 x-x^2}+B \sin ^{-1}\left(\frac{x+3}{4}\right)+\mathrm{c} $$ (where c is a constant of integration) then the value of $A+B$ is

A
$-$3
B
1
C
$-$1
D
3
MHT CET Papers
EXAM MAP