1
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The number of unit vectors perpendicular to $\overline{\mathrm{a}}=(1,1,0)$ and $\overline{\mathrm{b}}=(0,1,1)$ is

A
one.
B
two.
C
three.
D
infinite.
2
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the normal to the curve $y=\mathrm{f}(x)$ at the point $(3,4)$ makes an angle of $\left(\frac{3 \pi}{4}\right)$ with the positive $X$-axis, then the value of $f^{\prime}(3)$ is

A
$-1$
B
$-\frac{3}{4}$
C
$\frac{4}{3}$
D
1
3
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int \frac{2 x+5}{\sqrt{7-6 x-x^2}} d x=A \sqrt{7-6 x-x^2}+B \sin ^{-1}\left(\frac{x+3}{4}\right)+\mathrm{c} $$ (where c is a constant of integration) then the value of $A+B$ is

A
$-$3
B
1
C
$-$1
D
3
4
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A straight line L through the point $(3,-2)$ is inclined at an angle of $60^{\circ}$ to the line $\sqrt{3} x+y=1$. If L also intersects the X -axis, then the equation of $L$ is

A
$y+\sqrt{3} x+2-3 \sqrt{3}=0$
B
$y-\sqrt{3} x+2+3 \sqrt{3}=0$
C
$\sqrt{3} y-x+3+2 \sqrt{3}=0$
D
$\sqrt{3} y+x-3+2 \sqrt{3}=0$
MHT CET Papers
EXAM MAP