1
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{x+1}{x\left(1+x \mathrm{e}^x\right)^2} \mathrm{dx}=$$

A
$\log \left|\frac{x \mathrm{e}^x}{1+x \mathrm{e}^x}\right|+\frac{x}{1+x \mathrm{e}^x}+c$, (where c is a constant of integration)
B
$\quad \log \left|\frac{x \mathrm{e}^x}{1+x \mathrm{e}^x}\right|+\frac{\mathrm{e}^x}{1+x \mathrm{e}^x}+c$, (where c is a constant of integration)
C
$\quad \log \left|\frac{x \mathrm{e}^x}{1+x \mathrm{e}^x}\right|+\frac{1}{1+x \mathrm{e}^x}+c$, (where c is a constant of integration)
D
$\log \left|\frac{x \mathrm{e}^x}{1+x \mathrm{e}^x}\right|-\frac{1}{1+x \mathrm{e}^x}+c$, (where c is a constant of integration)
2
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

An ice ball melts at the rate which is proportional to the amount of ice at that instant. Half of the quantity of ice melts in 15 minutes. $x_0$ is the initial quantity of ice. If after 30 minutes the amount of ice left is $\mathrm{kx}_0$, then the value of $k$ is

A
$\frac{1}{2}$
B
$\frac{1}{3}$
C
$\frac{1}{4}$
D
$\frac{1}{8}$
3
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Contrapositive of the statement 'If two numbers are not equal, then their squares are not equal', is

A
If the squares of two numbers are not equal, then the numbers are equal.
B
If the squares of two numbers are equal, then the numbers are not equal.
C
If the squares of two numbers are equal, then the numbers are equal.
D
If the squares of two numbers are not equal, then the numbers are not equal.
4
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}:[1, \infty) \rightarrow[2, \infty)$ is given by $\mathrm{f}(x)=x+\frac{1}{x}$ then $\mathrm{f}^{-1}(x)$ equals

A
$\frac{x+\sqrt{x^2-4}}{2}$
B
$\frac{2}{1+x^2}$
C
$\frac{x-\sqrt{x^2-4}}{2}$
D
$1+\sqrt{x^2-4}$
MHT CET Papers
EXAM MAP