1
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}:[1, \infty) \rightarrow[2, \infty)$ is given by $\mathrm{f}(x)=x+\frac{1}{x}$ then $\mathrm{f}^{-1}(x)$ equals

A
$\frac{x+\sqrt{x^2-4}}{2}$
B
$\frac{2}{1+x^2}$
C
$\frac{x-\sqrt{x^2-4}}{2}$
D
$1+\sqrt{x^2-4}$
2
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The angles of a triangle are in the ratio $5: 1: 6$, then ratio of the smallest side to the greatest side is

A
$\sqrt{3}+1: 2 \sqrt{2}$
B
$2 \sqrt{2}: \sqrt{3}+1$
C
$2 \sqrt{2}: \sqrt{3}-1$
D
$\sqrt{3}-1: 2 \sqrt{2}$
3
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $y=y(x)$ be the solution of the differential equation $x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=x \log x,(x>1)$ If $2(y(2))=\log 4-1$ then the value of $y(\mathrm{e})$ is

A
$\frac{\mathrm{e}^2}{4}$
B
$\frac{-\mathrm{e}^2}{2}$
C
$\frac{-\mathrm{e}}{2}$
D
$\frac{\mathrm{e}}{4}$
4
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The area (in sq. units) of the region bounded by $y-x=2$ and $x^2=y$ is equal to

A
$\frac{2}{3}$
B
$\frac{4}{3}$
C
$\frac{9}{2}$
D
$\frac{16}{3}$
MHT CET Papers
EXAM MAP