1
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The distance of the point $(1,-5,9)$ from the plane $x-y+z=5$ measured along the line $x=y=\mathrm{z}$ is __________ units.

A
$3 \sqrt{10}$
B
$10 \sqrt{3}$
C
$\frac{10}{\sqrt{3}}$
D
$\frac{20}{3}$
2
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=1+x ; \mathrm{g}(x)=\log x$, then $\int \mathrm{g}(\mathrm{f}(x)) \mathrm{d} x$ is equal to

A
$(1+x) \log (1+x)-x+\mathrm{c}$, (where c is a constant of integration)
B
$(1+x) \log x-x+\mathrm{c}$, (where c is a constant of integration)
C
$x \log (1+x)+c$, (where c is a constant of integration)
D
$(1+x) \log (1+x)+x+\mathrm{c}$, (where c is a constant of integration)
3
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of $\sin x+\cos x=1$ is

A
$x=2 \mathrm{n} \pi, \mathrm{n} \in \mathbb{Z}$
B
$x=\mathrm{n} \pi+\frac{\pi}{2}, \mathrm{n} \in \mathbb{Z}$
C
$x=\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{4}-\frac{\pi}{4}, \mathrm{n} \in \mathbb{Z}$
D
not existing
4
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

In a $\triangle \mathrm{PQR}, \mathrm{m} \angle \mathrm{R}=\frac{\pi}{2}$. If $\tan \left(\frac{\mathrm{P}}{2}\right)$ and $\tan \left(\frac{\mathrm{Q}}{2}\right)$ are the roots of the equation $a x^2+b x+c=0(a \neq 0)$, then

A
$\mathrm{a}+\mathrm{b}=\mathrm{c}$
B
$\mathrm{b}+\mathrm{c}=\mathrm{a}$
C
$\mathrm{a+c=b}$
D
$\mathrm{b}=\mathrm{c}$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12