How is the interference pattern affected when violet light replaces sodium light?
A lead sphere of mass ' $m$ ' falls in viscous liquid with terminal velocity $\mathrm{V}_0$. Another lead sphere of mass ' 8 m ' but of same material will fall through the same liquid with terminal velocity
Two cylinders A and B fitted with piston contain equal amount of an ideal diatomic as at temperature ' T ' K . The piston of cylinder A is free to move while that of B is held fixed. The same amount of heat is given to the gas in each cylinder. If the rise temperature of the gas in A is ' $\mathrm{dT}_{\mathrm{A}}$ ', then the rise in temperature of the gas in cylinder B is $\left(\gamma=\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{v}}}\right)$
A photoelectric surface is illuminated successively by monochromatic light of Wavelength $\lambda$ and $(\lambda / 3)$. If the maximum kinetic energy of the emitted photoelectrons in the second case is 4 times that in the first case, the work function of the surface of the material is $(\mathrm{h}=$ Planck's constant, $\mathrm{c}=$ speed of light $)$