1
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\log _{x^2}(\log x)$, then at $x=\mathrm{e}, \mathrm{f}^{\prime}(x)$ has the value

A
$\frac{1}{\mathrm{e}^2}$
B
$\frac{1}{\mathrm{e}}$
C
$\mathrm{e}^2$
D
$\frac{1}{2 \mathrm{e}}$
2
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{I}=\int_0^{\frac{\pi}{4}} \log (1+\tan x) \mathrm{d} x$, then value of $\mathrm{I}$ is

A
$\frac{\pi}{16} \log 2$
B
$\frac{\pi}{2} \log 2$
C
$\frac{\pi}{8} \log 2$
D
$\frac{\pi}{4} \log 2$
3
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The parametric equations of the circle $x^2+y^2-\mathrm{a} x-b y=0$ are

A
$x=\frac{\mathrm{a}}{2}+\frac{\sqrt{\mathrm{a}^2+\mathrm{b}^2}}{2} \cos \theta, y=\frac{\mathrm{b}}{2}+\frac{\sqrt{\mathrm{a}^2+\mathrm{b}^2}}{2} \sin \theta$
B
$x=\frac{-\mathrm{a}}{2}+\frac{\sqrt{\mathrm{a}^2+\mathrm{b}^2}}{4} \sin \theta, y=\frac{-\mathrm{b}}{2}+\frac{\sqrt{\mathrm{a}^2+\mathrm{b}^2}}{4} \cos \theta$
C
$x=\frac{\mathrm{a}}{2}+\sqrt{\frac{\mathrm{a}^2+\mathrm{b}^2}{2}} \sin \theta, y=\frac{\mathrm{b}}{2}+\sqrt{\frac{\mathrm{a}^2+\mathrm{b}^2}{2}} \cos \theta$
D
$x=\frac{\mathrm{a}}{2}+\frac{\sqrt{\mathrm{a}^2+\mathrm{b}^2}}{4} \cos \theta, y=\frac{\mathrm{b}}{2}+\frac{\sqrt{\mathrm{a}^2+\mathrm{b}^2}}{4} \sin \theta$
4
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The curve $y=a x^3+b x^2+c x+5$ touches the X - axis at $(-2,0)$ and cuts the Y -axis at a point Q where its gradient is 3 , then values of $a, b, c$ respectively, are

A
$3,-\frac{1}{2},-\frac{3}{4}$
B
$-\frac{3}{4},-\frac{1}{2}, 3$
C
$-\frac{1}{2},-\frac{3}{4}, 3$
D
$-\frac{1}{2}, 3,-\frac{3}{4}$
MHT CET Papers
EXAM MAP