1
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \cos (\log x) \mathrm{d} x=$$

A
$\frac{x}{2}(\sin (\log x)-\cos (\log x))+c$, (where c is a constant of integration)
B
$x(\cos (\log x)-\sin (\log x))+c$, (where c is a constant of integration)
C
$\frac{x}{2}(\cos (\log x)+\sin (\log x))+\mathrm{c}$, (where c is a constant of integration)
D
$x(\cos (\log x)+\sin (\log x))+c$, (where c is a constant of integration)
2
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are non-coplanar unit vectors such that $\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=\frac{(\overline{\mathrm{b}}+\overline{\mathrm{c}})}{\sqrt{2}}$ then the angle between $\overline{\mathrm{a}}$ and $\bar{b}$ is

A
$\frac{3 \pi}{4}$
B
$\frac{\pi}{4}$
C
$\frac{\pi}{2}$
D
$\pi$
3
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The joint equation of pair of lines through the origin, each of which makes an angle of $30^{\circ}$ with Y -axis, is

A
$3 x^2-y^2=0$
B
 $x^2-3 y^2=0$
C
$3 x^2+y^2=0$
D
$x^2+3 y^2=0$
4
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $f(x)=\left\{\begin{array}{cc}\frac{1-\cos 4 x}{x^2} & , x<0 \\ a & , x=0 \\ \frac{\sqrt{2}}{\sqrt{16+\sqrt{x-4}}} & , x>0\end{array}\right.$ If $\mathrm{f}(x)$ is continuous at $x=0$, then the value of $a$ is

A
8
B
4
C
$\frac{1}{2}$
D
2
MHT CET Papers
EXAM MAP