1
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \cos (\log x) \mathrm{d} x=$$

A
$\frac{x}{2}(\sin (\log x)-\cos (\log x))+c$, (where c is a constant of integration)
B
$x(\cos (\log x)-\sin (\log x))+c$, (where c is a constant of integration)
C
$\frac{x}{2}(\cos (\log x)+\sin (\log x))+\mathrm{c}$, (where c is a constant of integration)
D
$x(\cos (\log x)+\sin (\log x))+c$, (where c is a constant of integration)
2
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are non-coplanar unit vectors such that $\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=\frac{(\overline{\mathrm{b}}+\overline{\mathrm{c}})}{\sqrt{2}}$ then the angle between $\overline{\mathrm{a}}$ and $\bar{b}$ is

A
$\frac{3 \pi}{4}$
B
$\frac{\pi}{4}$
C
$\frac{\pi}{2}$
D
$\pi$
3
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The joint equation of pair of lines through the origin, each of which makes an angle of $30^{\circ}$ with Y -axis, is

A
$3 x^2-y^2=0$
B
 $x^2-3 y^2=0$
C
$3 x^2+y^2=0$
D
$x^2+3 y^2=0$
4
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $f(x)=\left\{\begin{array}{cc}\frac{1-\cos 4 x}{x^2} & , x<0 \\ a & , x=0 \\ \frac{\sqrt{2}}{\sqrt{16+\sqrt{x-4}}} & , x>0\end{array}\right.$ If $\mathrm{f}(x)$ is continuous at $x=0$, then the value of $a$ is

A
8
B
4
C
$\frac{1}{2}$
D
2
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12