1
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $y=y(x)$ be the solution of the differential equation $x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=x \log x,(x>1)$ If $2(y(2))=\log 4-1$ then the value of $y(\mathrm{e})$ is

A
$\frac{\mathrm{e}^2}{4}$
B
$\frac{-\mathrm{e}^2}{2}$
C
$\frac{-\mathrm{e}}{2}$
D
$\frac{\mathrm{e}}{4}$
2
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The area (in sq. units) of the region bounded by $y-x=2$ and $x^2=y$ is equal to

A
$\frac{2}{3}$
B
$\frac{4}{3}$
C
$\frac{9}{2}$
D
$\frac{16}{3}$
3
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\bar{a}, \bar{b}$ and $\bar{c}$ be three unit vectors such that $\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=\frac{\sqrt{3}}{2}(\overline{\mathrm{~b}}+\overline{\mathrm{c}})$. If $\bar{b}$ is not parallel to $\bar{c}$, then the angle between $\bar{a}$ and $\bar{b}$ is

A
$\frac{3 \pi}{4}$
B
$\frac{\pi}{2}$
C
$\frac{2 \pi}{3}$
D
$\frac{5 \pi}{6}$
4
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$\lim _\limits{x \rightarrow 0} \frac{x \tan 2 x-2 x \tan x}{(1-\cos 2 x)^2}$ is

A
2
B
$-$2
C
$\frac{1}{2}$
D
$-\frac{1}{2}$
MHT CET Papers
EXAM MAP