1
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The curve $y=a x^3+b x^2+c x+5$ touches the X - axis at $(-2,0)$ and cuts the Y -axis at a point Q where its gradient is 3 , then values of $a, b, c$ respectively, are

A
$3,-\frac{1}{2},-\frac{3}{4}$
B
$-\frac{3}{4},-\frac{1}{2}, 3$
C
$-\frac{1}{2},-\frac{3}{4}, 3$
D
$-\frac{1}{2}, 3,-\frac{3}{4}$
2
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A variable plane passes through the fixed point $(3,2,1)$ and meets $X, Y$ and $Z$ axes at points $A$, B and C respectively. A plane is drawn parallel to YZ - plane through A , a second plane is drawn parallel to ZX -plan through B , a third plane is drawn parallel to XY - plane through C . Then locus of the point of intersection of these three planes, is

A
  $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{11}{6}$
B
$\frac{x}{3}+\frac{y}{2}+\frac{z}{1}=1$
C
$\frac{3}{x}+\frac{2}{y}+\frac{1}{z}=1$
D
$x+y+z=6$
3
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\sin \left(\cos ^{-1}\left(-\frac{1}{3}\right)-\sin ^{-1}\left(\frac{1}{3}\right)\right)$ is

A
1
B
2
C
3
D
4
4
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\overline{\mathrm{a}}, \overline{\mathrm{b}}$, and $\overline{\mathrm{c}}$ be three non-zero vectors such that no two of these are collinear. If the vector $\bar{a}+2 \bar{b}$ is collinear with $\bar{c}$ and $\bar{b}+3 \bar{c}$ is collinear with $\overline{\mathrm{a}}$, then $\overline{\mathrm{a}}+2 \overline{\mathrm{~b}}+6 \overline{\mathrm{c}}$ equals

A
$\lambda \bar{c}(\lambda$ being some non-zero scalar)
B
$\overline{\mathrm{b}}(\lambda$ being some non-zero scalar)
C
$\lambda \overline{\mathrm{a}}$ ( $\lambda$ being some non-zero scalar)
D
$\overline{0}$ ( $\lambda$ being some non-zero scalar)
MHT CET Papers
EXAM MAP