1
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the vectors $\overline{\mathrm{a}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}, \overline{\mathrm{b}}=2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=\lambda \hat{\mathrm{i}}+\hat{\mathrm{j}}+\mu \hat{\mathrm{k}}$ are mutually orthogonal, then $(\lambda, \mu) \equiv$

A
$(-3,2)$
B
$(2,-3)$
C
$(-2,3)$
D
$(3,-2)$
2
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y=(\sin x)^{\tan x}$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is equal to

A
$(\sin x)^{\tan x}\left(1+\sec ^2 x \log (\sin x)\right)$
B
$\tan x(\sin x)^{\tan x-1} \cos x$
C
$(\sin x)^{\tan x} \sec ^2 x \log \sin x$
D
$\tan x(\sin x)^{\tan x-1}$
3
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0
 

If for some $x \in \mathbb{R}^{+} \cup\{0\}$, the frequency distribution of the marks obtained by 20 students in a test is

Marks : 2 3 5 7
Frequency : $(x+1)^2$ $2x-5$ $x^2-3x$ $x$

then the mean of the marks is

A
3.0
B
2.5
C
2.8
D
3.2
4
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

One hundred identical coins, each with probability p , of showing up heads are tossed once. If $0<\mathrm{p}<1$ and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, then the value of $p$ is

A
$\frac{1}{2}$
B
$\frac{49}{101}$
C
$\frac{50}{101}$
D
$\frac{51}{101}$
MHT CET Papers
EXAM MAP