If the vectors $\overline{\mathrm{a}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}, \overline{\mathrm{b}}=2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=\lambda \hat{\mathrm{i}}+\hat{\mathrm{j}}+\mu \hat{\mathrm{k}}$ are mutually orthogonal, then $(\lambda, \mu) \equiv$
If $y=(\sin x)^{\tan x}$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is equal to
If for some $x \in \mathbb{R}^{+} \cup\{0\}$, the frequency distribution of the marks obtained by 20 students in a test is
Marks : | 2 | 3 | 5 | 7 |
---|---|---|---|---|
Frequency : | $(x+1)^2$ | $2x-5$ | $x^2-3x$ | $x$ |
then the mean of the marks is
One hundred identical coins, each with probability p , of showing up heads are tossed once. If $0<\mathrm{p}<1$ and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, then the value of $p$ is