1
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{I}=\int_0^{\frac{\pi}{4}} \log (1+\tan x) \mathrm{d} x$, then value of $\mathrm{I}$ is

A
$\frac{\pi}{16} \log 2$
B
$\frac{\pi}{2} \log 2$
C
$\frac{\pi}{8} \log 2$
D
$\frac{\pi}{4} \log 2$
2
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The parametric equations of the circle $x^2+y^2-\mathrm{a} x-b y=0$ are

A
$x=\frac{\mathrm{a}}{2}+\frac{\sqrt{\mathrm{a}^2+\mathrm{b}^2}}{2} \cos \theta, y=\frac{\mathrm{b}}{2}+\frac{\sqrt{\mathrm{a}^2+\mathrm{b}^2}}{2} \sin \theta$
B
$x=\frac{-\mathrm{a}}{2}+\frac{\sqrt{\mathrm{a}^2+\mathrm{b}^2}}{4} \sin \theta, y=\frac{-\mathrm{b}}{2}+\frac{\sqrt{\mathrm{a}^2+\mathrm{b}^2}}{4} \cos \theta$
C
$x=\frac{\mathrm{a}}{2}+\sqrt{\frac{\mathrm{a}^2+\mathrm{b}^2}{2}} \sin \theta, y=\frac{\mathrm{b}}{2}+\sqrt{\frac{\mathrm{a}^2+\mathrm{b}^2}{2}} \cos \theta$
D
$x=\frac{\mathrm{a}}{2}+\frac{\sqrt{\mathrm{a}^2+\mathrm{b}^2}}{4} \cos \theta, y=\frac{\mathrm{b}}{2}+\frac{\sqrt{\mathrm{a}^2+\mathrm{b}^2}}{4} \sin \theta$
3
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The curve $y=a x^3+b x^2+c x+5$ touches the X - axis at $(-2,0)$ and cuts the Y -axis at a point Q where its gradient is 3 , then values of $a, b, c$ respectively, are

A
$3,-\frac{1}{2},-\frac{3}{4}$
B
$-\frac{3}{4},-\frac{1}{2}, 3$
C
$-\frac{1}{2},-\frac{3}{4}, 3$
D
$-\frac{1}{2}, 3,-\frac{3}{4}$
4
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A variable plane passes through the fixed point $(3,2,1)$ and meets $X, Y$ and $Z$ axes at points $A$, B and C respectively. A plane is drawn parallel to YZ - plane through A , a second plane is drawn parallel to ZX -plan through B , a third plane is drawn parallel to XY - plane through C . Then locus of the point of intersection of these three planes, is

A
  $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{11}{6}$
B
$\frac{x}{3}+\frac{y}{2}+\frac{z}{1}=1$
C
$\frac{3}{x}+\frac{2}{y}+\frac{1}{z}=1$
D
$x+y+z=6$
MHT CET Papers
EXAM MAP