1
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\omega=-\frac{1}{2}+\mathrm{i} \frac{\sqrt{3}}{2}, \mathrm{i}=\sqrt{-1}$, then the value of $\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1-\omega^2 & \omega^2 \\ 1 & \omega^2 & \omega^4\end{array}\right|$ is

A
$3 \omega$
B
$3 \omega(\omega-1)$
C
$3 \omega^2$
D
$3 \omega(1-\omega)$
2
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let f be twice differentiable function such that $\mathrm{f}^{\prime \prime}(x)=-\mathrm{f}(x), \mathrm{f}^{\prime}(x)=\mathrm{g}(x)$ and $\mathrm{h}(x)=(\mathrm{f}(x))^2+(\mathrm{g}(x))^2$. If $\mathrm{h}(5)=1$, then the value of $h(10)$ is

A
2
B
1
C
$\frac{1}{2}$
D
$-1$
3
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $P(3,2,6)$ be a point in space and $Q$ be a point on the line $\bar{r}=\hat{i}-\hat{j}+2 \hat{k}+\mu(-3 \hat{i}+\hat{j}+5 \hat{k})$. Then the value of $\mu$ for which the vector $\overline{\mathrm{PQ}}$ is parallel to the plane $x-4 y+3 z=1$ is

A
$\frac{1}{4}$
B
$-\frac{1}{4}$
C
$\frac{1}{8}$
D
$-\frac{1}{8}$
4
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{f}(x)=\frac{x}{\sqrt{\mathrm{a}^2+x^2}}-\frac{\mathrm{d}-x}{\sqrt{\mathrm{~b}^2+(\mathrm{d}-x)^2}}, x \in \mathbb{R}$ where $\mathrm{a}, \mathrm{b}, \mathrm{d}$ are non-zero real constants. Then

A
$\mathrm{f}^{\prime}$ is not a continuous function of $x$.
B
f is neither increasing nor decreasing function of $x$.
C
f is an increasing function of $x$.
D
f is a decreasing function of $x$.
MHT CET Papers
EXAM MAP