1
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $f(x)=\left\{\begin{array}{cc}\frac{1-\cos 4 x}{x^2} & , x<0 \\ a & , x=0 \\ \frac{\sqrt{2}}{\sqrt{16+\sqrt{x-4}}} & , x>0\end{array}\right.$ If $\mathrm{f}(x)$ is continuous at $x=0$, then the value of $a$ is

A
8
B
4
C
$\frac{1}{2}$
D
2
2
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The number of solutions of $\tan x+\sec x=2 \cos x$ in $[0,2 \pi]$ is

A
2
B
3
C
0
D
1
3
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The maximum value of the function $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^3-15 x^2+36 x-48$ on the set $A=\left\{x / x^2+20 \leq 9 x\right\}$ is

A
$-$16
B
$-$7
C
16
D
7
4
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The number of unit vectors perpendicular to $\overline{\mathrm{a}}=(1,1,0)$ and $\overline{\mathrm{b}}=(0,1,1)$ is

A
one.
B
two.
C
three.
D
infinite.
MHT CET Papers
EXAM MAP