1
GATE CSE 2008
MCQ (Single Correct Answer)
+2
-0.6
Consider the following C functions:
int f1(int n){
 if(n == 0 || n == 1){
    return n;
 }
 return (2 * f1(n - 1) + 3 * f1(n - 2));
}
int f2(int n){
 int i;
 int X[N], Y[N], Z[N];
 X[0] = Y[0] = Z[0] = 0;
 X[1] = 1; Y[1] = 2; Z[1] = 3;
 for(i = 2; i <= n; i++){
  X[i] = Y[i - 1] + Z[i - 2];
  Y[i] = 2 * X[i];
  Z[i] = 3 * X[i];
 }
 return X[n];
}
The returning time of f1(n) and f2(n) are
A
$$\Theta \,(n)\,and\,\Theta \,(n)$$
B
$$\Theta \,({2^n})\,and\,\Theta \,(n)$$
C
$$\Theta \,(n)\,and\,\Theta \,({2^n})$$
D
$$\Theta \,({2^n})\,and\,\Theta \,({2^n})$$
2
GATE CSE 2008
MCQ (Single Correct Answer)
+1
-0.3
The most efficient algorithm for finding the number of connected components in an undirected graph on n vertices and m edges has time complexity
A
$$\Theta (n)$$
B
$$\Theta (m)$$
C
$$\Theta (n+m)$$
D
$$\Theta (mn)$$
3
GATE CSE 2008
MCQ (Single Correct Answer)
+2
-0.6
The minimum number of comparisons required to determine if an integer appears more than n/2 times in a sorted array of n integers is
A
$$\Theta \,(n)$$
B
$$\Theta \,({\log ^*}n)$$
C
$$\Theta \,({\log\,}n)$$
D
$$\Theta \,(1)$$
4
GATE CSE 2008
MCQ (Single Correct Answer)
+2
-0.6
You are given the post order traversal, P, of a binary search tree on the n element, 1,2,....,n. You have to determine the unique binary search tree that has P as its post order traversal. What is the time complexity of the most efficient algorithm for doing this?
A
$$\Theta \,(\log n)$$
B
$$\Theta \,(n)$$
C
$$\Theta \,(n\log n)$$
D
None of the above, as the tree cannot be uniquely determined.
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12