1
GATE CSE 2008
MCQ (Single Correct Answer)
+2
-0.6
Consider the following three schedules of transactions T1, T2 and T3.
[ Notation: In the following NYO represents the action Y (R for read, W for write) performed by transaction N on object O. ]
[ Notation: In the following NYO represents the action Y (R for read, W for write) performed by transaction N on object O. ]
(S1) 2RA 2WA 3RC 2WB 3WA 3WC 1RA 1RB 1WA 1WB
(S2) 3RC 2RA 2WA 2WB 3WA 1RA 1RB 1WA 1WB 3WC
(S3) 2RZ 3RC 3WA 2WA 2WB 3WC 1RA 1RB 1WA 1WB
Which of the following statements is TRUE?2
GATE CSE 2008
MCQ (Single Correct Answer)
+2
-0.6
Let R and S be two relations with the following schema
I. $$\Pi_P \left(R \bowtie S\right)$$
II. $$\Pi_P \left(R\right) \bowtie \Pi_P\left(S\right)$$
III. $$\Pi_P \left(\Pi_{P, Q} \left(R\right) \cap \Pi_{P,Q} \left(S\right) \right)$$
IV. $$\Pi_P \left(\Pi_{P, Q} \left(R\right) - \left(\Pi_{P,Q} \left(R\right) - \Pi_{P,Q} \left(S\right)\right)\right)$$
R (P, Q, R1, R2, R3)
S (P, Q, S1, S2)
Where {P, Q} is the key for both schemas. Which of the following queries are equivalent?I. $$\Pi_P \left(R \bowtie S\right)$$
II. $$\Pi_P \left(R\right) \bowtie \Pi_P\left(S\right)$$
III. $$\Pi_P \left(\Pi_{P, Q} \left(R\right) \cap \Pi_{P,Q} \left(S\right) \right)$$
IV. $$\Pi_P \left(\Pi_{P, Q} \left(R\right) - \left(\Pi_{P,Q} \left(R\right) - \Pi_{P,Q} \left(S\right)\right)\right)$$
3
GATE CSE 2008
MCQ (Single Correct Answer)
+1
-0.3
Which of the following tuple relational calculus expression(s) is/are equivalent to $$\forall t \in r \left(P\left(t\right)\right)$$?
I. $$\neg \exists t \in r \left(P\left(t\right)\right)$$II. $$\exists t \notin r \left(P\left(t\right)\right)$$
III. $$\neg \exists t \in r \left(\neg P\left(t\right)\right)$$
IV. $$\exists t \notin r \left(\neg P\left(t\right)\right)$$
4
GATE CSE 2008
MCQ (Single Correct Answer)
+2
-0.6
Consider The Following Relational Scheme
Student (school-id, sch-roll-no, sname, saddress)
School (school-id, sch-name, sch-address, sch-phone)
Enrolment (school-id, sch-roll-no, erollno, examname)
ExamResult (Erollno, examname, marks)
Consider the following tuple relational calculus query
{ t | ∃E ∈ Enrolment t = E.school-id ∧
| { x | x ∈ ExamResult B.school-id =
t ∧ ( ∃B ∈ ExamResult B.erollno =
x.erollno ∧ B.examname = x.examname ∧
B.marks > 35 } | ÷ |
{ x | x ∈ Enrolment ∧ x.school-id = t }
| * 100 > 35 }
If a student needs to score more than 35 marks to pass an exam what does the query return?Paper analysis
Total Questions
Algorithms
15
Compiler Design
4
Computer Networks
7
Computer Organization
9
Data Structures
9
Database Management System
12
Digital Logic
3
Discrete Mathematics
30
Operating Systems
7
Programming Languages
3
Theory of Computation
9
More papers of GATE CSE
GATE CSE 2024 Set 2
GATE CSE 2024 Set 1
GATE CSE 2023
GATE CSE 2022
GATE CSE 2021 Set 2
GATE CSE 2021 Set 1
GATE CSE 2020
GATE CSE 2019
GATE CSE 2018
GATE CSE 2017 Set 2
GATE CSE 2017 Set 1
GATE CSE 2016 Set 2
GATE CSE 2016 Set 1
GATE CSE 2015 Set 1
GATE CSE 2015 Set 3
GATE CSE 2015 Set 2
GATE CSE 2014 Set 2
GATE CSE 2014 Set 3
GATE CSE 2014 Set 1
GATE CSE 2013
GATE CSE 2012
GATE CSE 2011
GATE CSE 2010
GATE CSE 2009
GATE CSE 2008
GATE CSE 2007
GATE CSE 2006
GATE CSE 2005
GATE CSE 2004
GATE CSE 2003
GATE CSE 2002
GATE CSE 2001
GATE CSE 2000
GATE CSE 1999
GATE CSE 1998
GATE CSE 1997
GATE CSE 1996
GATE CSE 1995
GATE CSE 1994
GATE CSE 1993
GATE CSE 1992
GATE CSE 1991
GATE CSE 1990
GATE CSE 1989
GATE CSE 1988
GATE CSE 1987
GATE CSE
Papers
2023
2022
2020
2019
2018
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987