1
GATE CSE 2008
MCQ (Single Correct Answer)
+1
-0.3
In the Karnaugh map shown below, $$X$$ denotes a don’t care term. What is the minimal form of the function represented by the Karnaugh map? GATE CSE 2008 Digital Logic - K Maps Question 10 English
A
$$\overline b \,.\,\overline d + \overline a \,.\,\overline d $$
B
$$\overline a \,.\,\overline b + \overline b \,.\,\overline d + \overline a \,.\,\overline b \,.\overline d $$
C
$$\overline b \,.\,\overline d + \overline a \,.\,\overline b \,.\overline d $$
D
$$\overline a \,.\,\overline b + \,\overline b \,.\,\overline d + \overline a \,.\,\overline a \,.\overline d $$
2
GATE CSE 2008
MCQ (Single Correct Answer)
+2
-0.6
If $$P, Q, R$$ are Boolean variables, then $$\left( {P + \overline Q } \right)$$ $$\left( {P.\overline Q + P.R} \right)\left( {\overline P .\overline R + \overline Q } \right)$$ Simplifies to
A
$${P.\,\,\overline Q }$$
B
$${P.\,\,\overline R }$$
C
$${P.\,\,\overline Q + R}$$
D
$${P.\,\,\overline R + Q}$$
3
GATE CSE 2008
MCQ (Single Correct Answer)
+1
-0.3
Given $${f_1},$$ $${f_3},$$ and $$f$$ in canonical sum of products form (in decimal) for the circuit. $$${f_1} = \sum {m\left( {4,5,6,7,8} \right)} $$$ $$${f_3} = \sum {m\left( {1,6,15} \right)} $$$ $$$f = \sum {m\left( {1,6,8,15} \right)} $$$
Then $${f_2}$$ is GATE CSE 2008 Digital Logic - Boolean Algebra Question 49 English
A
$$\sum {m\left( {4,6} \right)} $$
B
$$\sum {m\left( {4,8} \right)} $$
C
$$\sum {m\left( {6,8} \right)} $$
D
$$\sum {m\left( {4,6,8} \right)} $$
4
GATE CSE 2008
MCQ (Single Correct Answer)
+1
-0.3
$$\mathop {\lim }\limits_{x \to \infty } {{x - \sin x} \over {x + \cos \,x}}\,\,Equals$$
A
$$1$$
B
$$-1$$
C
$$\infty $$
D
$$ - \infty $$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12