1
AP EAPCET 2024 - 19th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The displacement of a particle executing simple harmonic motion is $y=A \sin (2 t+\phi) \mathrm{m}$, where $t$ is time in second and $\phi$ is phase angle. At time $t=0$, the displacement and velocity of the particle are 2 m and $4 \mathrm{~ms}^{-1}$. The phase angle, $\phi=$
A
$60^{\circ}$
B
$30^{\circ}$
C
$45^{\circ}$
D
$90^{\circ}$
2
AP EAPCET 2024 - 19th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The displacement of a damped oscillator is $x(t)=\exp (-0.2 t) \cos (3.2 t+\phi)$, where $t$ is time in second The time requirement for the amplitude of the oscillator to become $\frac{1}{e^{1.2}}$ times its initial amplitude is
A
3 s
B
6 s
C
2 s
D
8 s
3
AP EAPCET 2024 - 18th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
Time period of a simple pendulum in air is $T$. If the pendulum is in water and executes SHM. Its time period is $t$. The value of $\frac{T}{t}$ is. (density of bob is $\frac{5000}{3} \mathrm{~kg} \mathrm{~m}^{-3}$ )
A
$\frac{2}{5}$
B
$\sqrt{\frac{2}{5}}$
C
$\frac{5}{2}$
D
$\sqrt{\frac{5}{2}}$
4
AP EAPCET 2024 - 18th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
For a particle executing simple harmonic motion, Match the following statements ( conditions) from Column I to statements (shapes of graph) in Columinit
Column I Column II
a Velocity-displacement graph
$(\omega=1)$
i Straight line
b Acceleration-displacement graph ii Sinusoidal
c Acceleration - time graph iii Circle
d Acceleration - velocity $(\omega \neq 1)$ iv Ellipse
A
a-N, b-i, c-il, d-iif
B
$\mathrm{a}-\mathrm{in}, \mathrm{b}-\mathrm{i}, \mathrm{c}-\mathrm{i}, \mathrm{d}=\mathrm{k}$
C
$a=i i, b-1 l, c-1, d-N$
D
$a-N, b=\bar{c} C=(d-\#$
AP EAPCET Subjects
EXAM MAP