1
GATE CE 2012
+1
-0.3
The Poisson's ratio is defined as
A
$$\left| {{{axial\,stress} \over {lateral\,stress}}} \right|$$
B
$$\left| {{{lateral\,strain} \over {axial\,strain}}} \right|$$
C
$$\left| {{{lateral\,stress} \over {axial\,stress}}} \right|$$
D
$$\left| {{{axial\,strain} \over {lateral\,strain}}} \right|$$
2
GATE CE 2010
+1
-0.3
The number of independent elastic constants for a linear elastic isotropic and homogeneous material is
A
4
B
3
C
2
D
1
3
GATE CE 2007
+1
-0.3
For an isotropic material, the relationship between the young’s modulus (E), shear modulus (G) and Poisson’s ratio (μ) is given by
A
$$G\;=\;\frac E{\left[(1+\mu)\right]}$$
B
$$G\;=\;\frac E{\left[2(1+\mu)\right]}$$
C
$$G\;=\;\frac E{\left[(1+2\mu)\right]}$$
D
$$G\;=\;\frac E{\left[2(1+2\mu)\right]}$$
4
GATE CE 2002
+1
-0.3
The shear modulus (G), modulus of elasticity (E) and the Poisson's ratio ($$\mu$$) of a material are related as
A
$$G\;=\;\frac E{\left[2(1+\mu)\right]}$$
B
$$E\;=\;\frac G{\left[2(1+\mu)\right]}$$
C
$$G\;=\;\frac E{\left[2(1-\mu)\right]}$$
D
$$G\;=\;\frac E{\left[2(\mu - 1)\right]}$$
EXAM MAP
Medical
NEET