1
GATE CE 2012
MCQ (Single Correct Answer)
+1
-0.3
The Poisson's ratio is defined as
A
$$\left| {{{axial\,stress} \over {lateral\,stress}}} \right|$$
B
$$\left| {{{lateral\,strain} \over {axial\,strain}}} \right|$$
C
$$\left| {{{lateral\,stress} \over {axial\,stress}}} \right|$$
D
$$\left| {{{axial\,strain} \over {lateral\,strain}}} \right|$$
2
GATE CE 2010
MCQ (Single Correct Answer)
+1
-0.3
The number of independent elastic constants for a linear elastic isotropic and homogeneous material is
A
4
B
3
C
2
D
1
3
GATE CE 2007
MCQ (Single Correct Answer)
+1
-0.3
For an isotropic material, the relationship between the young’s modulus (E), shear modulus (G) and Poisson’s ratio (μ) is given by
A
$$G\;=\;\frac E{\left[(1+\mu)\right]}$$
B
$$G\;=\;\frac E{\left[2(1+\mu)\right]}$$
C
$$G\;=\;\frac E{\left[(1+2\mu)\right]}$$
D
$$G\;=\;\frac E{\left[2(1+2\mu)\right]}$$
4
GATE CE 2002
MCQ (Single Correct Answer)
+1
-0.3
The shear modulus (G), modulus of elasticity (E) and the Poisson's ratio ($$\mu$$) of a material are related as
A
$$G\;=\;\frac E{\left[2(1+\mu)\right]}$$
B
$$E\;=\;\frac G{\left[2(1+\mu)\right]}$$
C
$$G\;=\;\frac E{\left[2(1-\mu)\right]}$$
D
$$G\;=\;\frac E{\left[2(\mu - 1)\right]}$$
GATE CE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12