1
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the circle which passes through the centre of the circle $x^2+y^2+8 x+10 y-7=0$ and concentric which the circle $2 x^2+2 y^2-8 x-12 y-9=0$ is

A
$x^2+y^2-4 x-6 y+77=0$
B
$x^2+y^2-4 x-6 y-89=0$
C
$x^2+y^2-4 x-6 y+97=0$
D
$x^2+y^2-4 x-6 y-87=0$
2
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The acute angle between the lines $x \cos 30^{\circ}+y \sin 30^{\circ}=3$ and $x \cos 60^{\circ}+y \sin 60^{\circ}=5$ is

A
$75^{\circ}$
B
$30^{\circ}$
C
$60^{\circ}$
D
$45^{\circ}$
3
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $f(x)=\left(\sin ^4 x+\cos ^4 x\right), 0< x<\frac{\pi}{2}$, then the function has minimum value at $x=$

A
$0.7934, \frac{\pi}{9}$
B
$\frac{1}{2}, \frac{\pi}{4}$
C
$\frac{5}{8}, \frac{\pi}{3}$
D
$0.75, \frac{\pi}{8}$
4
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

For an entry to a certain course, a candidate is given twenty problems to solve. If the probability that the candidate can solve any problem is $\frac{3}{7}$, then the probability that he is unable to solve at most two problem is

A
$\frac{256}{49}\left(\frac{4}{7}\right)^{18}$
B
$\frac{1966}{49}\left(\frac{4}{7}\right)^{18}$
C
$\frac{1710}{49}\left(\frac{4}{7}\right)^{18}$
D
$\frac{1726}{49}\left(\frac{4}{7}\right)^{18}$
MHT CET Papers
EXAM MAP