If $\mathrm{f}(x)=\cos ^{-1} x, \mathrm{~g}(x)=\mathrm{e}^x$ and $\mathrm{h}(x)=\mathrm{g}(\mathrm{f}(x))$, then $\frac{\mathrm{h}^{\prime}(x)}{\mathrm{h}(x)}=$
Five persons $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E are seated in a circular arangement, if each of them is given a hat of one of the three colours red, blue and green, then the number of ways, of distributing the hats such that the person seated in adjacent seats get different coloured hats, is
The value of $\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{1}{\sin 2 x\left(\tan ^5 x+\cot ^5 x\right)} d x$ is
If $\left|\frac{\mathrm{z}}{1+\mathrm{i}}\right|=2$, where $\mathrm{z}=x+\mathrm{i} y, \mathrm{i}=\sqrt{-1}$ represents a circle, then centre ' $C$ ' and radius ' $r$ ' of the circle are