1
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\cos ^{-1} x, \mathrm{~g}(x)=\mathrm{e}^x$ and $\mathrm{h}(x)=\mathrm{g}(\mathrm{f}(x))$, then $\frac{\mathrm{h}^{\prime}(x)}{\mathrm{h}(x)}=$

A
$\frac{-1}{\sqrt{1-x^2}}$
B
$\frac{-(\mathrm{e})^{\left(\cos ^{-1} x\right)}}{\sqrt{1-x^2}}$
C
$\frac{-1}{\sqrt{1-x^2}} \mathrm{e}^x$
D
$-\sqrt{1-x^2}$
2
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Five persons $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E are seated in a circular arangement, if each of them is given a hat of one of the three colours red, blue and green, then the number of ways, of distributing the hats such that the person seated in adjacent seats get different coloured hats, is

A
30
B
15
C
60
D
40
3
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{1}{\sin 2 x\left(\tan ^5 x+\cot ^5 x\right)} d x$ is

A
$\frac{1}{5}\left(\frac{\pi}{4}-\tan ^{-1}\left(\frac{1}{3 \sqrt{3}}\right)\right)$
B
$\frac{1}{2}\left(\frac{\pi}{4}-\tan ^{-1}\left(\frac{1}{9 \sqrt{3}}\right)\right)$
C
$\frac{1}{10}\left(\frac{\pi}{4}-\tan ^{-1}\left(\frac{1}{9 \sqrt{3}}\right)\right)$
D
$\frac{1}{10}\left(\frac{\pi}{4}-\tan ^{-1}\left(\frac{1}{3 \sqrt{3}}\right)\right)$
4
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\left|\frac{\mathrm{z}}{1+\mathrm{i}}\right|=2$, where $\mathrm{z}=x+\mathrm{i} y, \mathrm{i}=\sqrt{-1}$ represents a circle, then centre ' $C$ ' and radius ' $r$ ' of the circle are

A
$\mathrm{C} \equiv(3,0), \mathrm{r}=4$
B
$\mathrm{C} \equiv(6,0), \mathrm{r}=2$
C
$\mathrm{C} \equiv(0,3), \mathrm{r}=8$
D
$ \mathrm{C} \equiv(0,0), \mathrm{r}=2 \sqrt{2}$
MHT CET Papers
EXAM MAP