1
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The Solution set of the equation $\sin ^2 \theta-\cos \theta=\frac{1}{4}$ in the interval $[0,2 \pi]$ is

A
$\left\{\frac{\pi}{6}, \frac{5 \pi}{6}\right\}$
B
$\left\{\frac{\pi}{3}, \frac{5 \pi}{3}\right\}$
C
$\left\{\frac{\pi}{3}, \frac{2 \pi}{3}\right\}$
D
$\left\{\frac{2 \pi}{3}, \frac{4 \pi}{3}\right\}$
2
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the points $(1,-1, \lambda)$ and $(-3,0,1)$ are equidistant from the plane $3 x-4 y-12 z+13=0$, then the sum of all possible values of $\lambda$ is

A
$\frac{7}{3}$
B
$\frac{10}{3}$
C
$\frac{4}{3}$
D
$\frac{5}{3}$
3
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{a}=\hat{i}-2 \hat{j}+3 \hat{k}$ and $\bar{b}=2 \hat{i}+3 \hat{j}-\hat{k}$, then the angle between the vectors $(2 \bar{a}+\bar{b})$ and $(\overline{\mathrm{a}}+2 \overline{\mathrm{~b}})$ is

A
$\frac{\pi}{6}$
B
$\frac{\pi}{3}$
C
$\frac{\pi}{4}$
D
$\frac{\pi}{2}$
4
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The maximum value of the objective function $\mathrm{z}=4 x+6 y$ subject to $3 x+2 y \leq 12, x+y \geq 4, x$, $y \geq 0$ is

A
24
B
46
C
56
D
36
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12