1
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The Solution set of the equation $\sin ^2 \theta-\cos \theta=\frac{1}{4}$ in the interval $[0,2 \pi]$ is

A
$\left\{\frac{\pi}{6}, \frac{5 \pi}{6}\right\}$
B
$\left\{\frac{\pi}{3}, \frac{5 \pi}{3}\right\}$
C
$\left\{\frac{\pi}{3}, \frac{2 \pi}{3}\right\}$
D
$\left\{\frac{2 \pi}{3}, \frac{4 \pi}{3}\right\}$
2
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the points $(1,-1, \lambda)$ and $(-3,0,1)$ are equidistant from the plane $3 x-4 y-12 z+13=0$, then the sum of all possible values of $\lambda$ is

A
$\frac{7}{3}$
B
$\frac{10}{3}$
C
$\frac{4}{3}$
D
$\frac{5}{3}$
3
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{a}=\hat{i}-2 \hat{j}+3 \hat{k}$ and $\bar{b}=2 \hat{i}+3 \hat{j}-\hat{k}$, then the angle between the vectors $(2 \bar{a}+\bar{b})$ and $(\overline{\mathrm{a}}+2 \overline{\mathrm{~b}})$ is

A
$\frac{\pi}{6}$
B
$\frac{\pi}{3}$
C
$\frac{\pi}{4}$
D
$\frac{\pi}{2}$
4
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The maximum value of the objective function $\mathrm{z}=4 x+6 y$ subject to $3 x+2 y \leq 12, x+y \geq 4, x$, $y \geq 0$ is

A
24
B
46
C
56
D
36
MHT CET Papers
EXAM MAP