1
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The incenter of the triangle ABC , whose vertices are $\mathrm{A}(0,2,1), \mathrm{B}(-2,0,0)$ and $\mathrm{C}(-2,0,2)$ is

A
$\left(\frac{3}{2},-\frac{1}{2},-1\right)$
B
$\left(\frac{3}{2}, \frac{1}{2}, 1\right)$
C
$\left(-\frac{3}{2}, \frac{1}{2}, 1\right)$
D
$\left(-\frac{3}{2},-\frac{1}{2},-1\right)$
2
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The combined equation of two lines through the origin and making an angle of $45^{\circ}$ with the line $3 x+y=0$, is

A
$2 x^2-3 x y-2 y^2=0$
B
$2 x^2+3 x y+4 y^2=0$
C
$2 x^2+3 x y-2 y^2=0$
D
$2 x^2-3 x y+2 y^2=0$
3
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the differential equation $\frac{1}{x} \frac{\mathrm{~d} y}{\mathrm{~d} x}=\tan ^{-1}$ is

A
$y+\frac{x^2 \tan ^{-1} x}{2}+\mathrm{c}=0$, where c is a constant of integration.
B
$y+x \tan ^{-1} x+\mathrm{c}=0$, where c is a constant integration.
C
$y-x-\tan ^{-1} x+\mathrm{c}=0$, where is a constant of integration.
D
$y=\frac{x^2 \tan ^{-1} x}{2}-\frac{1}{2}\left(x-\tan ^{-1} x\right)+\mathrm{c}$, where c is constant of integration.
4
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The area (in square units) in the first quadrant bounded by the curve $y=x^2+2$ and the lines $y=x+1, x=0$ and $x=3$, is

A
$\frac{15}{4}$
B
$\frac{21}{2}$
C
$\frac{17}{4}$
D
$\frac{15}{2}$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12