1
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The acute angle between the lines $x \cos 30^{\circ}+y \sin 30^{\circ}=3$ and $x \cos 60^{\circ}+y \sin 60^{\circ}=5$ is

A
$75^{\circ}$
B
$30^{\circ}$
C
$60^{\circ}$
D
$45^{\circ}$
2
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $f(x)=\left(\sin ^4 x+\cos ^4 x\right), 0< x<\frac{\pi}{2}$, then the function has minimum value at $x=$

A
$0.7934, \frac{\pi}{9}$
B
$\frac{1}{2}, \frac{\pi}{4}$
C
$\frac{5}{8}, \frac{\pi}{3}$
D
$0.75, \frac{\pi}{8}$
3
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

For an entry to a certain course, a candidate is given twenty problems to solve. If the probability that the candidate can solve any problem is $\frac{3}{7}$, then the probability that he is unable to solve at most two problem is

A
$\frac{256}{49}\left(\frac{4}{7}\right)^{18}$
B
$\frac{1966}{49}\left(\frac{4}{7}\right)^{18}$
C
$\frac{1710}{49}\left(\frac{4}{7}\right)^{18}$
D
$\frac{1726}{49}\left(\frac{4}{7}\right)^{18}$
4
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{A}>\mathrm{B}$ and $\tan \mathrm{A}-\tan \mathrm{B}=x$ and $\cot \mathrm{B}-\cot \mathrm{A}=y$, then $\cot (\mathrm{A}-\mathrm{B})=$

A
$\frac{1}{y}-\frac{1}{x}$
B
$\frac{1}{x}-\frac{1}{y}$
C
$\frac{1}{x}+\frac{1}{y}$
D
$\frac{x y}{x-y}$
MHT CET Papers
EXAM MAP