1
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The maximum value of the objective function $\mathrm{z}=4 x+6 y$ subject to $3 x+2 y \leq 12, x+y \geq 4, x$, $y \geq 0$ is

A
24
B
46
C
56
D
36
2
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\frac{\mathrm{d}}{\mathrm{~d} x}\left(\cos ^{-1}\left(\frac{x-\frac{1}{x}}{x+\frac{1}{x}}\right)\right)=$$

A
$\frac{x^2+1}{x^2-1}$
B
$\frac{2}{1+x^2}$
C
$\frac{-1}{1+x^2}$
D
$\frac{-2}{1+x^2}$
3
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{a}, \bar{b}, \bar{c}$ are non-coplanar vectors and $\overline{\mathrm{p}}=\frac{\overline{\mathrm{b}} \times \overline{\mathrm{c}}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}, \overline{\mathrm{q}}=\frac{\overline{\mathrm{c}} \times \overline{\mathrm{a}}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}, \overline{\mathrm{r}}=\frac{\overline{\mathrm{a}} \times \overline{\mathrm{b}}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}$, then $2 \overline{\mathrm{a}} \cdot \overline{\mathrm{p}}+\overline{\mathrm{b}} \cdot \overline{\mathrm{q}}+\overline{\mathrm{c}} \cdot \overline{\mathrm{r}}=$

A
0
B
3
C
4
D
1
4
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The approximate value of $\tan ^{-1}(0.999)$ is (use $\pi=3.1415$ )

A
0.7843
B
0.7849
C
0.7847
D
0.7851
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12