1
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\frac{\mathrm{d}}{\mathrm{~d} x}\left(\cos ^{-1}\left(\frac{x-\frac{1}{x}}{x+\frac{1}{x}}\right)\right)=$$

A
$\frac{x^2+1}{x^2-1}$
B
$\frac{2}{1+x^2}$
C
$\frac{-1}{1+x^2}$
D
$\frac{-2}{1+x^2}$
2
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{a}, \bar{b}, \bar{c}$ are non-coplanar vectors and $\overline{\mathrm{p}}=\frac{\overline{\mathrm{b}} \times \overline{\mathrm{c}}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}, \overline{\mathrm{q}}=\frac{\overline{\mathrm{c}} \times \overline{\mathrm{a}}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}, \overline{\mathrm{r}}=\frac{\overline{\mathrm{a}} \times \overline{\mathrm{b}}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}$, then $2 \overline{\mathrm{a}} \cdot \overline{\mathrm{p}}+\overline{\mathrm{b}} \cdot \overline{\mathrm{q}}+\overline{\mathrm{c}} \cdot \overline{\mathrm{r}}=$

A
0
B
3
C
4
D
1
3
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The approximate value of $\tan ^{-1}(0.999)$ is (use $\pi=3.1415$ )

A
0.7843
B
0.7849
C
0.7847
D
0.7851
4
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let P be a plane passing through the points $(2,1,0),(4,1,1)$ and $(5,0,1)$ and $R$ be the point $(2,1,6)$. Then image of $R$ in the plane $P$ is

A
$(6,5,2)$
B
$(4,3,2)$
C
$(6,5,-2)$
D
$(3,4,-2)$
MHT CET Papers
EXAM MAP