1
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\int\left(\frac{4 e^x-25}{2 e^x-5}\right) d x=A x+B \log \left(2 e^x-5\right)+c \quad$ (where c is a constant of integration) then

A
$\mathrm{A}=5, \mathrm{~B}=3$
B
$\mathrm{A}=5, \mathrm{~B}=-3$
C
$\mathrm{A}=-5, \mathrm{~B}=3$
D
$\mathrm{A}=-5, \mathrm{~B}=-3$
2
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The converse of $[p \wedge(\sim q)] \rightarrow r$ is

A
$\sim \mathrm{r} \rightarrow(\sim \mathrm{p} \vee \mathrm{q})$
B
$\mathrm{r} \rightarrow(\sim \mathrm{p} \wedge \sim \mathrm{q})$
C
$(\sim p \vee q) \rightarrow \sim r$
D
$\mathrm{r} \rightarrow(\mathrm{p} \wedge \mathrm{q})$
3
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation obtained by eliminating arbitrary constant from the equation $y^2=(x+c)^3$ is

A
$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^3=27 y$
B
$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^3=-27 y$
C
$8\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^3=27 y$
D
$ 8\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^3+27 y=0$
4
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the statements $p, q$ and $r$ have the truth values $\mathrm{F}, \mathrm{T}, \mathrm{F}$ respectively, then the truth values of the statement patterns $(p \wedge \sim q) \rightarrow r$ and $(p \vee q) \rightarrow r$ are respectively

A
$\mathrm{T}, \mathrm{T}$
B
$\mathrm{T}, \mathrm{F}$
C
$F, T$
D
$F, F$
MHT CET Papers
EXAM MAP