1
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\int\left(\frac{4 e^x-25}{2 e^x-5}\right) d x=A x+B \log \left(2 e^x-5\right)+c \quad$ (where c is a constant of integration) then

A
$\mathrm{A}=5, \mathrm{~B}=3$
B
$\mathrm{A}=5, \mathrm{~B}=-3$
C
$\mathrm{A}=-5, \mathrm{~B}=3$
D
$\mathrm{A}=-5, \mathrm{~B}=-3$
2
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The converse of $[p \wedge(\sim q)] \rightarrow r$ is

A
$\sim \mathrm{r} \rightarrow(\sim \mathrm{p} \vee \mathrm{q})$
B
$\mathrm{r} \rightarrow(\sim \mathrm{p} \wedge \sim \mathrm{q})$
C
$(\sim p \vee q) \rightarrow \sim r$
D
$\mathrm{r} \rightarrow(\mathrm{p} \wedge \mathrm{q})$
3
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation obtained by eliminating arbitrary constant from the equation $y^2=(x+c)^3$ is

A
$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^3=27 y$
B
$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^3=-27 y$
C
$8\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^3=27 y$
D
$ 8\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^3+27 y=0$
4
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the statements $p, q$ and $r$ have the truth values $\mathrm{F}, \mathrm{T}, \mathrm{F}$ respectively, then the truth values of the statement patterns $(p \wedge \sim q) \rightarrow r$ and $(p \vee q) \rightarrow r$ are respectively

A
$\mathrm{T}, \mathrm{T}$
B
$\mathrm{T}, \mathrm{F}$
C
$F, T$
D
$F, F$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12