1
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The co-ordinates of the point where the line through $\mathrm{A}(3,4,1)$ and $\mathrm{B}(5,1,6)$ crosses the $x y$-plane are

A
$\left(\frac{13}{5}, \frac{23}{5}, 0\right)$
B
$\left(-\frac{13}{5}, \frac{23}{5}, 0\right)$
C
$\left(\frac{13}{5},-\frac{23}{5}, 0\right)$
D
$\left(-\frac{13}{5},-\frac{23}{5}, 0\right)$
2
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\frac{\tan ^{-1}(\sqrt{3})-\sec ^{-1}(-2)}{\operatorname{cosec}^{-1}(-\sqrt{2})+\cos ^{-1}\left(\frac{-1}{2}\right)}$

A
$\frac{4}{5}$
B
$\frac{-4}{5}$
C
$\frac{3}{5}$
D
0
3
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\int \frac{\mathrm{d} x}{x^2\left(x^4+1\right)^{\frac{3}{4}}}$ is

A
$\frac{\left(x^4+1\right)^{\frac{1}{4}}}{x}+\mathrm{c}$, where c is a constant of integration.
B
$\left(x^4+1\right)^{\frac{1}{4}}+\mathrm{c}$, where c is a constant of integration.
C
$\frac{-\left(x^4+1\right)^{\frac{1}{4}}}{x}+\mathrm{c}$, where c is a constant of integration.
D
$-\left(x^4+1\right)^{\frac{1}{4}}+c$, where $c$ is a constant of integration.
4
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $(a+b) \cos C+(b+c) \cos A+(c+a) \cos B=72$ and if $a=18, b=24$, then area of the triangle $A B C$ is

A
144 sq.units
B
216 sq.units
C
256 sq.units
D
296 sq. units
MHT CET Papers
EXAM MAP