1
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\frac{x+x^2+x^3+\ldots \ldots \ldots \ldots+x^{\mathrm{n}}-\mathrm{n}}{x-1}$, for $x \neq 1$ is continuous at $x=1$, then $\mathrm{f}(1)=$

A
$\frac{\mathrm{n}(\mathrm{n}+1)(4 \mathrm{n}-1)}{6}$
B
$\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
C
$\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}$
D
$\frac{\mathrm{n}(2 \mathrm{n}+1)}{4}$
2
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The particular solution of differential equation $\left(1+y^2\right)(1+\log x) \mathrm{d} x+x \mathrm{~d} y=0$ at $x=1, y=1$ is

A
$\log x-\frac{1}{2}(\log x)^2-\tan ^{-1} y=-\frac{\pi}{4}$
B
$\log x+\frac{1}{2}(\log x)^2+\tan ^{-1} y=\frac{\pi}{4}$
C
$\log x-\frac{1}{2}(\log x)^2+\tan ^{-1} y=\frac{\pi}{4}$
D
$\log x+\frac{1}{2}(\log x)^2-\tan ^{-1} y=\frac{\pi}{4}$
3
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\lim _\limits{x \rightarrow 1} \frac{x^2-a x+b}{x-1}=7$, then $a+b$ is equal to

A
$-$1
B
1
C
$-$11
D
11
4
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A ladder 5 m long rests against a vertical wall. If its top slides downwards at the rate of $10 \mathrm{~cm} / \mathrm{sec}$., then the foot of the ladder is sliding at the rate of _________ $\mathrm{m} / \mathrm{sec}$., when it is 4 m away from the wall.

A
0.75
B
7.5
C
0.0075
D
0.075
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12